

Welcome to PHPLucidFrame’s documentation!

Table of Contents:

	About PHPLucidFrame
	Prerequisites

	License

	Installation
	Development Environment

	Production Environment

	Secret key

	Application Structure
	Page Structure

	Directory and File Precedence

	Page Workflow

	Layout Mode

	Configuration & Parameters

	The View
	Creating View

	Passing Data To view

	Nested Views

	Layout File

	Stylesheets & Scripts In Head

	Bootstrapping

	Core Defined Constants & Variables

	URL Routing
	Custom Routes

	Route Groups

	Accessing URL

	Creating and Getting URL

	Redirecting URL

	Custom URL Rewrite

	File Inclusion

	Auto-loading Libraries
	Composer

	Custom Autoloader

	Database Configuration
	Make Your Credentials Secret

	Connecting to Multiple Databases

	Database Session

	Working With Data
	Inserting Your Data

	Updating Your Data

	Deleting Your Data

	Query Conditions

	Condition Operators

	Finding Data

	Query Builder
	Selecting Data for Multiple Results

	Selecting Data for Single Result

	Selecting Data for Muliple Fields

	Selecting Data for Single Field

	Joining Tables

	Fetching Specific Data (WHERE condition)

	Grouping Results

	HAVING Condition on Group Result

	Ordering Results

	Counting Results

	Limiting Results

	Aggregates

	Native Queries

	Schema Manager
	Default Options for Tables

	Table Definition

	Data Type Mapping Matrix

	Loading Your Schema

	Exporting Your Schema

	Managing Schema Changes

	Database Seeding
	Seeding Syntax

	Seeding Example

	Executing Seeds

	Middleware
	Before Middleware

	After Middleware

	Order/Precedence for Middlewares

	Assigning Middleware to Routes

	Form & Validation
	Creating AJAX Form

	Creating A Generic Form Without AJAX

	Form Action Handling & Validation

	Setting Data Validation

	Sanitizing Form Inputs

	Core Validation Rules

	Custom Validation Rules

	File Helper
	File Upload Form and File Handling

	Generic File Upload

	AsynFileUploader (Asynchronous File Uploader)

	PHP Hooks for AsynFileUploader

	Javascript Hooks for AsynFileUploader

	List with Pagination
	Create an AJAX Listing Page

	Create an AJAX Listing Page with jQuery Dialog Form

	Create a Generic Listing Page without AJAX

	Customize Pagination Display

	Authentication & Authorization
	Encrypting Passwords

	Logging In and Logging Out

	Checking Anonymous User or Logged-in User

	Access Control with Permissions and User Roles

	Working with Permissions in Your Database

	Creating A Multi-lingual Site
	Configuration of Internationalization

	Creating PO files

	Translation of Long Paragraphs

	Switching the Site Language

	The LucidFrame Console
	Running a Built-in Command

	Creating a Basic Command

	Useful Helpers
	_app($name, $value = null)

	_cfg($key, $value = ‘’)

	_cfgOption($name, $key)

	_env($name, $default = ‘’)

	_p($name = ‘env’)

	_baseUrlWithProtocol()

	_arg($index = null, $path = null)

	_entity($table, $dbNamespace = null)

	_addJsVar($name, $value = ‘’)

	_addHeadStyle($file)

	_addHeadScript($file)

	_json(array $data, $status = 200)

	_requestHeader($name)

	_r()

	_rr()

	_url($path = null, $queryStr = array(), $lang = ‘’)

	_redirect($path = null, $queryStr = array(), $lang = ‘’, $status = null)

	_page404()

	_shorten($str, $length = 50, $trail = ‘…’)

	_fdate($date = ‘’, $format = ‘’)

	_fdatetime($dateTime = ‘’, $format = ‘’)

	_randomCode($length = 5, $letters = array(), $prefix = ‘’)

	_slug($string, $table = ‘’, array $condition = array())

	_isHttpPost()

	Ajax and Javascript API
	The Page

	The Form

	The List

	LC.DependentUpdater

	LC.eval

	LC.getKeyByValue

	Hooks And Overrides
	Hooks

	Overrides

About PHPLucidFrame

PHPLucidFrame (a.k.a LucidFrame) is a mini application development framework - a toolkit for PHP developers. It provides logical structure and several helper utilities for web application development. It uses a functional architecture to simplify complex application development.

Prerequisites

	Web Server (Apache with mod_rewrite enabled)

	PHP version 5.6 or newer is recommended, but we strongly advise you to use one of the currently supported versions.

	MySQL 5.0 or newer

License

PHPLucidFrame is licensed under the MIT license. This means that you are free to modify, distribute and republish the source code on the condition that the copyright notices are left intact. You are also free to incorporate PHPLucidFrame into any Commercial or closed source application.

Installation

You can get a fresh copy of PHPLucidFrame on the official website [http://www.phplucidframe.com] or from the github repository [http://www.phplucidframe.com/download/release/latest].

	Extract the downloaded archive in your local webserver document root, and you will get a folder named phplucidframe-x.y.z where x.y.z would be your downloaded version.

	Rename it as acme (the name is up to you).

	Change baseURL to acme in /inc/parameter/development.php.

	Check http://localhost/acme in your browser.

Alternatively, you can install PHPLucidFrame using Composer [http://getcomposer.org]. Open your terminal and CD to your webserver document root, and then run

composer create-project --prefer-dist phplucidframe/phplucidframe acme

Development Environment

In development, your directory setup may look something like the following structure so that it can be accessible via http://localhost/acme.

/path_to_webserver_document_root
 /acme
 /app
 /assets
 /db
 /files
 /i18n
 /inc
 /lib
 /tests
 /vendor
 .htaccess
 index.php

In this case, the configuration variable baseURL in /inc/parameter/development.php should look like this:

return array(
 # No trailing slash (only if it is located in a sub-directory of the document root)
 # Leave blank if it is located in the document root
 'baseURL' => 'acme',
 //
);

Note

acme would be your project or app name.

 Application Structure

Application Structure

	Directory

	Description

	app

	This directory structure contains the application files and folders of your site.
The directory is auto-bootstrapped with PHPLucidFrame environment.

	app/helpers

	The helpers mapping to the system core helpers should be placed in this directory
directory. They are auto-loaded. For example, the custom validation helper
(validation_helper.php) should be placed in this directory and it is auto-loaded
across the site. The following helper files are allowed:

	auth_helper.php

	db_helper.php

	file_helper.php

	pager_helper.php

	session_helper.php

	utility_helper.php

	validation_helper.php

	app/cmd

	The console command implementation should be placed in this directory. They are
auto-loaded. For example, if you implement a custom command file GreetCommand.php
it should be placed in this directory and it is auto-loaded across the site.

	app/services

	This directory should be used to place the files which contains the business log
functions or classes. They usually do the direct operations to the database layer.

	app/middleware

	This directory should contain the files used for middleware.

	app/inc

	The directory can include the site template files and site configuration file.

	/tpl/layout.php

	/tpl/401.php (overridable by /inc/tpl/401.php)

	/tpl/403.php (overridable by /inc/tpl/403.php)

	/tpl/404.php (overridable by /inc/tpl/404.php)

	/tpl/head.php (when layoutMode is disabled)

	/tpl/header.php (when layoutMode is disabled)

	/tpl/footer.php (when layoutMode is disabled)

	app/js

	The application javascript files should be placed in this directory.

	assets

	This directory contains all client resources such css, images, and js.

	assets/css

	This directory contains the application CSS files.

	assets/images

	This directory contains the images of the application.

	assets/js

	This directory contains the system core javascript files which should not be hacked.
Your application javascript files should be placed in /app/assets/js.

	db

	This directory contains the database-related stuffs such as schema files,
seeding files, etc.

	db/build

	This directory has the built schema definitions and it is ignored from version control.

	db/generated

	This directory has the generated sql dump files and it is ignored from version control.

	files

	This directory contains the files and folders of your site uploaded data. For example,
sessions, photos, cache, etc.

	i18n

	This directory should be used to place .po language files, for example,

	en.po

	zh-CN.po

	i18n/ctn

	For example,

	en/

	about-us.en

	privacy-policy.en

	zh-CN/

	about-us.zh-CN

	privacy-policy.zh-CN

	inc

	The following files are overridable or inherited by the app/inc or
app/subsite/inc directory.

	/tpl/401.php (overridable by /app/inc/tpl/401.php)

	/tpl/403.php (overridable by /app/inc/tpl/403.php)

	/tpl/404.php (overridable by /app/inc/tpl/404.php)

	lib

	This directory is reserved for core library files. Custom and overwritten helpers should
be placed in their own subdirectory of the app/helpers or app/{subsite}/helpers
directory sessions, photos, cache, etc.

	tests

	This directory should contain all test files. The directory is auto-bootstrapped with
PHPLucidFrame environment.

	vendor

	This directory should be used to place downloaded and custom modules and third party
libraries which are common to all sites.

Page Structure

PHPLucidFrame encourages a uniform and structural page organization. In brief, a web page in LucidFrame is represented by a folder containing at least one file: view.php or two files: index.php and view.php.

/path_to_webserver_document_root
 /acme
 /app
 /home
 |-- view.php (required)
 |-- index.php (optional)
 |-- action.php (optional)
 |-- list.php (optional)

	The view.php (required) is a visual output representation to user using data provided by query.php. It generally should contain HTML between <body> and </body>.

	The index.php (optional) serves as the front controller for the requested page, initializing some basic resources and business logic needed to run the page. This is optional. view.php will be served as the front controller if index.php doesn’t exist.

	The action.php (optional) handles form submission. It should perform form validation, create, update, delete of data manipulation to database. By default, a form is initiated for AJAX and action.php is automatically invoked if the action attribute is not given in the <form> tag.

	The list.php (optional) is a server page requested by AJAX, which retrieves data and renders HTML to the client. It is normally implemented for listing with pagination.

As an example, you can see the directory /app/home/ and the directories under /app/example/ of the PHPLucidFrame release you downloaded.

Directory and File Precedence

PHPLucidFrame has directory and file precedence to look for when a page request is made. For example, a request to http://www.example.com/post or http://localhost/acme/post will look for the directory and file as the following order:

	Order

	File

	Description

	
	

	/app/post/view.php

	when index.php doesn’t exist in the post directory

	
	

	/app/post/index.php

	when index.php and view.php eixst in the post directory

	
	

	/app/post.php

	when there is no post directory with view.php;
It is good for implementation without view presentation such as API response with json.
post.php may end up with _json(array(...));

Page Workflow

This illustration demonstrates a request to http://www.example.com/post or http://localhost/acme/post.

[image: _images/page-workflow.png]

Layout Mode

Since version 3.0, layout mode is enabled by default with the following two configurations in /inc/config.php.

$lc_layoutMode: Enable layout mode or not
$lc_layoutMode = true;
$lc_layoutMode: Default layout file name
$lc_layoutName = 'layout'; // default layout file name pointed to app/inc/tpl/layout.php

You can see the default layout file app/inc/tpl/layout.php which contains the whole page HTML layout and its load the particular page view (view.php) by calling _app('view')->load().

You may have a separate layout file for a particular page, let’s say for example, you have a login page which have a different layout other than the rest pages of the site. You can create a new layout file app/inc/tpl/layout_login.php.

/path_to_webserver_document_root
 /acme
 /app
 /inc
 /tpl
 |-- layout.php
 |-- layout_login.php
 /login
 |-- action.php
 |-- index.php
 |-- view.php

You can set the new layout name for login page in app/login/index.php such as

_app('view')->layout = 'layout_login';

Then, the login page will use layout_login.php whereas the other pages use layout.php.

Disabling Layout Mode

By disabling layout mode, you can have two template files - header.php and footer.php in app/inc/tpl, and they will have to be included in every view.php explicitly. You can disable layout mode by adding the setting in app/inc/site.config.php.

$lc_layoutMode: Enable layout mode or not
$lc_layoutMode = false;

Then, you can include header and footer files by using _app('view')->block('fileName') in each view.php.

<?php _app('view')->block('header') ?>

<!--- page stuffs here -->

<?php _app('view')->block('footer') ?>

If you want to disable layout mode for a particular page only. You can add _cfg('layoutMode', false); at the top of index.php of the page folder.

Note

	The disabled layout mode is a legacy way and not recommended since version 3.0. You can check the version 2 documentation about application structure at https://phplucidframe.readthedocs.io/en/v2.2.0/application-structure.html

 Configuration & Parameters

Configuration & Parameters

There are a couple of configuration files in PHPLucidFrame. These configuration files allow you to configure things like your database connection information, your mail server information, as well as various other core configuration values.

	
	File

	Description

	1

	/inc/config.php

	The core configuration settings (copy of config.default.php)

	2

	/inc/route.config.php

	Configuration for routes

	3

	/inc/constants.php

	The core global constants

	4

	/inc/parameter/development.php

	The configuration settings for development environment

	5

	/inc/parameter/production.php

	The configuration settings for production environment

	6

	/inc/parameter/staging.php

	The configuration settings for staging environment

	7

	/inc/parameter/test.php

	The configuration settings for testing environment

	8

	/inc/parameter/parameter.env.inc

	The configuration settings what would be excluded from your version Control
(copy of /inc/parameter/parameter.env.example.inc)

	9

	/app/inc/site.config.php

	The custom app-specific configuration settings and the configration settings
from /inc/config.php can also be overidden here

	10

	/app/inc/route.config.php

	The custom app-specific route configuration settings

	11

	/app/inc/constants.php

	The app-specific constants

There may be additional configuration files if you have sub-sites or modules in your application. Let’s say, if you have admin module in your application, there could be the following configuration files in the admin directory.

	/app/admin/inc/site.config.php

	/app/admin/inc/route.config.php

	/app/admin/inc/constants.php

	
	File

	Description

	1

	/app/inc/site.config.php

	The configuration settings for admin and the settings
from /inc/config.php can also be overidden here

	2

	/app/admin/inc/route.config.php

	You can define admin routes here

	3

	/app/admin/inc/constants.php

	You can define constants for admin here

Note that it works only when you define “admin” in $lc_sites in /inc/config.php.

$lc_sites = array(
 /* 'virtual_folder_name (namespace)' => 'path/to/physical_folder_name_directly_under_app_directory' */
 'admin' => 'admin'
);

Let’s say, you have http://example.com and http://example.com/admin

When you access http://example.com, these config files are included in the following priority:

	/inc/config.php

	/app/inc/site.config.php

When you access http://example.com/admin, these config files are included in the following priority:

	/inc/config.php

	/app/inc/site.config.php

	/app/admin/inc/site.config.php

When you access http://example.com, these route config files are included in the following priority:

	/inc/route.config.php

	/app/inc/route.config.php

When you access http://example.com/admin, these config files are included in the following priority:

	/inc/route.config.php

	/app/inc/route.config.php

	/app/admin/inc/route.config.php

When you access http://example.com, these constant files are included in the following priority:

	/inc/constants.php

	/app/inc/constants.php

When you access http://example.com/admin, these constant files are included in the following priority:

	/inc/constants.php

	/app/inc/constants.php

	/app/admin/inc/constants.php

 The View

The View

As of version 3.0.0, PHPLucidFrame added a default global View object for managing your layout file, rendering variables to your views, including head scripts/styles, loading your view templates. The View object is available by calling _app('view').

Creating View

A view is a visual output representation to user and is simply a web page, or a page fragment. You can create a view by placing a file view.php in a particular page directory, for example, a single post page http://www.example.com/post/{id} or http://localhost/acme/post/{id} may look like the below directory structure:

/app
 /post
 |-- index.php
 |-- view.php <--

The view.php generally should contain HTML between <body> and </body>. This may include header and footer fragments. But the header and footer may be also put into the layout file. See Layout File section.

Passing Data To view

You can pass data to your view by using the addData() method of the View object. You can get the View object using $view = _app('view') and set data using $view->addData('name', $value) in a particular index.php. For example, /app/post/index.php may look like this

$id = _get('id');
$view = _app('view');

$post = db_findOrFail('post', $id);

_app('title', $blog->title);

$view->addData('pageTitle', $post->title); // This will be available as $pageTitle in view
$view->addData('post', $post); // This will be available as $post in view

Alternatively, you can pass an array of data to view by directly assigning to the data property of the View object.

$view->data = array(
 'pageTitle' => $post->title,
 'post' => $post,
);

Nested Views

Views may also be nested. You can include another view in a view. Let’s say for example, you have a view (fragement) to show recent posts in single post page.

/app
 /post
 |-- index.php
 |-- recent-posts.php <--
 |-- view.php

You can include recent-posts.php in view.php like this

<?php _app('view')->block('recent-posts') ?>

If recent-posts.php is needed to include in more than one page, you can move the file into /app/inc/tpl/ and _app('view')->block('recent-posts') will automatically look for the file in that directory when it is not found in the current directory.

A new option to return html from the block() method is added since version 3.1. You can provide thrid parameter to the method.

<?php
$html = _app('view')->block('recent-posts', $data, true)
echo $html;
?>

Layout File

Since verion 3.0, layout mode is enabled by default ($lc_layoutMode = true in /inc/config.php). The default layout file is configured as $lc_layoutName = 'layout' which points to app/inc/tpl/layout.php.

Basically a layout file would have the below structure.

<!DOCTYPE html>
<html>
<head>
 <title><?php echo _title() ?></title>
 <link rel="canonical" href="<?php echo _canonical() ?>" />
 <?php _hreflang() ?>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <?php _metaSeoTags() ?>
 <link rel="shortcut icon" href="<?php echo _img('favicon.ico'); ?>" type="image/x-icon" />
 <?php _css('base.css') ?>
 <?php _css('base.' . _lang() . '.css') ?> <!-- you may not need this if your site doesn't have multi-languages ->
 <?php _css('responsive.css') ?>
 <?php _css('jquery.ui') ?>
 <?php _app('view')->headStyle() ?> <!-- styles added by a particular page ->
 <?php _js('jquery') ?>
 <?php _js('jquery.ui') ?>
 <?php _script() ?> <!-- this is required for global JS variables -->
 <?php _js('LC.js') ?>
 <?php _app('view')->headScript() ?> <!-- scripts added by a particular page ->
 <?php _js('app.js') ?>
</head>
<body>
 <div>
 <header>
 <!-- your header stuffs -->
 </header>
 <section>
 <?php _app('view')->load() ?> <!-- This injects a particular view template here -->
 </section>
 </footer>
 <!-- your footer stuffs -->
 </footer>
 </div>
</body>
</html>

Note

	You can check /app/inc/tpl/layout.php.

 Bootstrapping

Bootstrapping

The /app directory is auto-bootstrapped with PHPLucidFrame environment. If you have a new directory out of the app directory, all script files in that directory are not auto-bootstrapped. However you can manually bootstrap them. Let’s say you have a directory /scripts at the same level of the /app directory and you have a script file /scripts/example.php, the file should have the following content.

<?php
chdir('../'); // change directory to the root directory from the current directory
require_once('bootstrap.php');

// Do something here …

Then the script has been bootstrapped in PHPLucidFrame environment.

 Core Defined Constants & Variables

Core Defined Constants & Variables

The following PHP constants are available across PHPLucidFrame.

	Constant

	Description

	DS

	Convenience use of DIRECTORY_SEPARATOR

	APP_ROOT

	File system path to the application’s directory

	WEB_ROOT

	URL to the application root, e.g., http://www.example.com or
http://localhost/phplucidframe/

	ROOT

	File system path to the directory root

	INC

	File system path to the directory inc in the root directory

	DB

	File system path to the directory db in the root directory

	LIB

	File system path to the directory lib in the root directory

	HELPER

	File system path to the directory lib/helpers in the root directory

	CLASSES

	File system path to the directory lib/classes in the root directory

	I18N

	File system path to the directory i18n in the root directory

	THIRD_PARTY

	File system path to the directory third-party in the root directory

	VENDOR

	File system path to the directory vendors in the root directory

	FILE

	File system path to the directory files in the root directory

	CACHE

	File system path to the directory cache in the root directory

	ASSETS

	File system path to the directory assets in the root directory

	CSS

	File system path to the directory assets/css in the root directory

	IMAGE

	File system path to the directory assets/images in the root directory

	JS

	File system path to the directory assets/js in the root directory

	TEST_DIR

	File system path to the directory tests in the root directory

	LC_NAMESPACE

	Namespace according to the site directories, for example,
if you have www.example.com/admin, you may have a namespace admin.

	WEB_VENDOR

	Web-accessible path to the vendors directory.,
e.g., http://www.example.com/vendors/

	HOME

	The home page URL

Note

	You can also define your own constants in /inc/constants.php or /app/inc/constants.php.

 URL Routing

URL Routing

PHPLucidFrame typically requires mod_rewrite enabled on web server. As per the default configuration in /inc/route.config.php, the app home page is by default set to /home which is mapped to the directory /app/home/ and it is accessible via http://localhost/phplucidframe or http://www.example.com. You can change it according to your need.

// inc/route.config.php
/**
 * The named route example `lc_home`
 */
route('lc_home')->map('/', '/home');

PHPLucidFrame is already designed for friendly URL without any custom route defined. Let’s say for example, you have a page /app/post/index.php and URL http://www.example.com/post/1/edit. The URL will be mapped to the file /app/post/index.php by passing 2 arguments - 1 and edit.

// http://www.example.com/post/1/edit => /app/post/index.php
echo _arg(1); // 1
echo _arg(2); // edit
echo _url('post', array(1, 'edit')); // http://www.example.com/post/1/edit

Custom Routes

If you are not enough with PHPLucidFrame basic routing and if you need your own custom routes, you can easily define them in /inc/route.config.php. The following example shows the route key lc_blog_show of the route path /blog/{id}/{slug} mapping to /app/blog/show/index.php by passing two arguments id and slug with the requirements of id to be digits and slug to be alphabets/dashes/underscores.

// inc/route.config.php
/**
 * The named route example `lc_blog_show`
 * This is an example routed to the directory `/app/blog/show`
 */
route('lc_blog_show')->map('/blog/{id}/{slug}', '/blog/show', 'GET', array(
 'id' => '\d+', # {id} must be digits
 'slug' => '[a-zA-Z\-_]+' # {slug} must only contain alphabets, dashes and underscores
));

Then you can get the argument values from _get('id') and _get('slug') in /app/blog/show/index.php.

// app/blog/show/index.php
$id = _get('id');
$slug = _get('slug');

Here is the custom routing configuration syntax:

route($name)->map($path, $to, $method = 'GET', $patterns = null)

	Argument Name

	Type

	Description

	$name

	string

	Any unique route name to the mapped $path

	$path

	string

	URL path with optional dynamic variables such as /post/{id}/edit

	$to

	string

	GET, POST, PUT or DELETE or any combination with | such as GET|POST.
Default to GET.

	$pattern

	array|null

	Array of the regex patterns for variables in $path such as array('id' => '\d+')

Route Groups

PHPLucidFrame 2.0 supports route groups using prefix which allows you to prepend a URI prefix to a large number of routes. In the following example, the URI prefix /api/posts is added to all routes defined inside route_group():

route_group('/api/posts', function () {
 route('lc_post')->map('/', '/example/api/post', 'GET');
 route('lc_post_create')->map('/', '/example/api/post/create', 'POST');
 route('lc_post_update')->map('/{id}', '/example/api/post/update', 'PUT', array('id' => '\d+'));
 route('lc_post_delete')->map('/{id}', '/example/api/post/delete', 'DELETE', array('id' => '\d+'));
});

The above route groups definition is equal to these individual route definitions:

route('lc_post')->map('/api/posts', '/example/api/post', 'GET');
route('lc_post_create')->map('/api/posts', '/example/api/post/create', 'POST');
route('lc_post_update')->map('/api/posts/{id}', '/example/api/post/update', 'PUT', array('id' => '\d+'));
route('lc_post_delete')->map('/api/posts/{id}', '/example/api/post/delete', 'DELETE', array('id' => '\d+'));

Note

	You can define your custom routes in /inc/route.config.php or /app/inc/route.config.php

 File Inclusion

File Inclusion

PHPLucidFrame helps you to include files more easier. You can use _i() for PHP files, _js() for Javascript files and _css() for CSS files. The _i() is returning the system file path and it has to be used with the PHP built-in functions include and require. The _js() and _css() will look for the files in the directory /assets/css/ and /assets/js/ and include them automatically.

All of three functions will operate based on the configuration variable $lc_sites in /inc/config.php. They will look for the files from the most specific directory to the least. For example, if you use include(_i('inc/tpl/head.php')), it will look for the files as follow and it will stop where the file is found.

	/app/inc/tpl/head.php

	/inc/tpl/head.php

Another example is that if you have a directory /app/admin/ configured in $lc_sites as follow:

$lc_sites: consider sub-directories as additional site roots and namespaces
/**
 * ### Syntax
 * array(
 * 'virtual_folder_name (namespace)' => 'physical_folder_name_directly_under_app_directory'
 *)
 * For example, if you have the configuration `array('admin' => 'admin')` here, you let LucidFrame know to include the files
 * from those directories below without specifying the directory name explicitly in every include:
 * /app/admin/assets/css
 * /app/admin/assets/js
 * /app/admin/inc
 * /app/admin/helpers
 * you could also set 'lc-admin' => 'admin', then you can access http://localhost/phplucidframe/lc-admin
 * Leave this an empty array if you don't want this feature
 * @see https://github.com/phplucidframe/phplucidframe/wiki/Configuration-for-The-Sample-Administration
-Module
 */
$lc_sites = array(
 'admin' => 'admin',
);

then, PHPLucidFrame will look for the file:

	/app/admin/inc/tpl/head.php

	/app/inc/tpl/head.php

	/inc/tpl/head.php

For js() and _css(), you don’t need to include the directory path as it looks for the files in the /assets/js/ and /assets/css/ folders and prints out <script> and <link /> respectively if they found the files. There are two system provided directories - /assets/js/ and /assets/css/ under the root. Let’s say you also have those two directories in other sub-directories as below:

/path_to_webserver_document_root
 /app
 |-- /admin
 | |-- /assets
 | | |-- /css
 | | |-- /js
 |-- /assets
 | |-- /css
 | |-- /js
 /assets
 |-- /css
 |-- /js

When you use _js('app.js') and if you are at admin, it will look for the file as the following priority and it will stop where the file is found.

	/app/admin/assets/js/app.js

	/app/assets/js/app.js

	/assets/js/app.js

It is same processing for the usage of _css('base.css'):

	/app/admin/assets/css/base.css

	/app/assets/css/base.css

	/assets/css/base.css

 Auto-loading Libraries

Auto-loading Libraries

There are two ways of auto-loading third-party libraries:

	Using Composer

	Using Custom Autoloader

Composer

Composer support is automatically initialized by default. It looks for Composer’s autoload file at /vendor/autoload.php. You just need to add libraries to composer.json.

Custom Autoloader

If you are not using composer, you can update /inc/autoload.php to load a library. The following is a few steps to do:

	Download any third-party library

	Put it in the folder /third-party

	Load the file using the helper function _loader() in /inc/autoload.php

Let’s say for example, you are trying to integrate the library PHP-JWT [https://github.com/firebase/php-jwt].

	Download the library from downloading the library from https://github.com/firebase/php-jwt/tags.

	Unzip and put the folder in /third-party as /third-party/php-jwt-x.y.z (x.y.z is the library version number you downloaded). However, you can also rename it as /third-party/php-jwt.

	Add _loader('JWT', THIRD_PARTY . 'php-jwt-x.y.z/src/'); in /inc/autoload.php. This will load /third-party/php-jwt-x.y.z/src/JWT.php.

	Then, you can try the following code.

use Firebase\\JWT\\JWT;

$key = "example_key";
$payload = array(
 "iss" => "http://example.org",
 "aud" => "http://example.com",
 "iat" => 1356999524,
 "nbf" => 1357000000
);

/**
* IMPORTANT:
* You must specify supported algorithms for your application. See
* https://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms-40
* for a list of spec-compliant algorithms.
*/
$jwt = JWT::encode($payload, $key);
_pr($jwt);

$decoded = JWT::decode($jwt, $key, array('HS256'));
_pr($decoded);

/*
NOTE: This will now be an object instead of an associative array. To get
an associative array, you will need to cast it as such:
*/
$decoded_array = (array) $decoded;
_dpr($decoded_array);

 Database Configuration

Database Configuration

You can configure your database settings in three files according to your deployment environments:

	/inc/parameter/development.php for development environment

	/inc/parameter/staging.php for staging environment

	/inc/parameter/production.php for production environment

	/inc/parameter/test.php for test environment

return array(
 // ...
 # Database connection information
 'db' => array(
 'default' => array(
 'engine' => 'mysql', // database engine
 'host' => 'localhost', // database host
 'port' => '', // database port
 'database' => 'lucid_blog', // database name
 'username' => 'root', // database username
 'password' => '', // database password
 'prefix' => '', // table name prefix
 'collation' => 'utf8_unicode_ci' // database collation
)
)
 // ...
);

Make Your Credentials Secret

As of version 2.0, PHPLucidFrame includes a file /inc/parameter/parameter.env.example.inc. You can copy and rename it to parameter.env.inc which is already ignored from version control. So, in the file, you can define your important information that needs to be secret and to not share with others. For example, you can define your production database credentials in /inc/parameter/parameter.env.inc like below:

return array(
 'prod' => array(# either prod or production as you like
 'db' => array(
 'default' => array(
 'database' => 'your_prod_db',
 'username' => 'your_prod_username',
 'password' => 'your_prod_pwd',
 'prefix' => '',
)
)
)
);

then, you can call those parameters from /inc/parameter/production.php using _env('prod.db.default.xxxx')

return array(
 // ...
 # Database connection information
 'db' => array(
 'default' => array(
 'engine' => 'mysql', // database engine
 'host' => 'localhost', // database host
 'port' => '', // database port
 'database' => _env('prod.db.default.database')
 'username' => _env('prod.db.default.username')
 'password' => _env('prod.db.default.password')
 'prefix' => _env('prod.db.default.prefix')
 'collation' => 'utf8_unicode_ci' // database collation
)
)
 // ...
);

Connecting to Multiple Databases

Sometimes, we need to connect multiple databases in our app. As an example, you might have two databases, the default database and a legacy database. The configuration in /inc/parameter/development.php or /inc/parameter/production.php for your two databases would be as below:

return array(
 // ...
 # Database connection information
 'db' => array(
 'default' => array(
 'driver' => 'mysql',
 'host' => 'localhost',
 'port' => '',
 'database' => 'your_db_name',
 'username' => 'your_db_username',
 'password' => 'your_db_pwd',
 'prefix' => '',
 'charset' => 'utf8mb4',
 'collation' => 'utf8mb4_unicode_ci',
 'engine' => 'InnoDB',
),
 'legacy' => array(
 'driver' => 'mysql',
 'host' => 'localhost',
 'port' => '',
 'database' => 'legacy_db_name',
 'username' => 'legacy_db_username',
 'password' => 'legacy_db_pwd',
 'prefix' => '',
 'charset' => 'utf8mb4',
 'collation' => 'utf8mb4_unicode_ci',
 'engine' => 'InnoDB',
)
),
 // ...
);

When you need to connect to one of the other databases, you activate it by its key name and switch back to the default connection when finished:

Get some information from the legacy database.
db_switch('legacy');

Fetching data from the `user` table of the legacy database
$result = db_select('user')
 ->where('uid', $uid)
 ->getSingleResult()

Switch back to the default connection when finished.
db_switch(); // or db_switch('default');

Database Session

Since version 1.5, PHPLucidFrame supports database session management. It is useful when your site is set up with load balancer that distributes workloads across multiple resources. Here’s the minimum table schema requirement for database session.

CREATE TABLE `lc_sessions` (
 `sid` varchar(64) NOT NULL DEFAULT '',
 `host` varchar(128) NOT NULL DEFAULT '',
 `timestamp` int(11) unsigned DEFAULT NULL,
 `session` longblob NOT NULL DEFAULT '',
 `useragent` varchar(255) NOT NULL DEFAULT '',
 PRIMARY KEY (`sid`)
);

Once you have the table created, you just need to configure $lc_session['type'] = 'database' in /inc/config.php (copy of /inc/config.default.php) such as

$lc_session = array(
 'type' => 'database',
 'options' => array(
 /* you can configure more options here, see the comments in /inc/config.default.php */
)
);

 Working With Data

Working With Data

To insert, update, delete data, PHPLucidFrame provides the helper functions - db_insert(), db_update(), db_delete() and db_delete_multi().

Inserting Your Data

db_insert() will save you when you are trying to insert your data into the database without writing INSERT statement. The syntax is

db_insert('table_name', $data = array(), $useSlug = true)

For example,

$success = db_insert('post', array(
 'title' => 'New Title', // this will be used for the slug field while third argument is true
 'body' => 'Post complete description here',
));

if ($success) {
 // do something with db_insertId() or db_insertSlug()
}

You can also provide a custom slug in the $data array.

$slug = 'your-custom-slug-string';
$success = db_insert('post', array(
 'slug' => $slug,
 'title' => 'Updated Title',
 'body' => 'Updated post complete description here'
));

	db_insertId() [http://www.phplucidframe.com/api-doc/latest/function-db_insertId.html] which returns the auto generated id used in the last query.

	db_insertSlug() [http://www.phplucidframe.com/api-doc/latest/function-db_insertSlug.html] returns the generated slug used in the last query.

Note

	The first field in data array will be used to insert into the slug field.

	Table prefix to the table name of the first parameter is optional.

 Query Builder

Query Builder

As of version 1.9, PHPLucidFrame added a new feature called query builder that allows data to be retrieved in your database without writing raw SQL statements.

Selecting Data for Multiple Results

If you want to fetch an array of result set, you can use getResult().

$result = db_select('post')->getResult();
_pr($result); // array of results

This generates the following query:

SELECT * FROM `post`

Selecting Data for Single Result

To get a single result set, you can use getSingleResult().

$result = db_select('post')->getSingleResult();
_pr($result); // the result object

This generates the following query:

SELECT * FROM `post` LIMIT 1

Selecting Data for Muliple Fields

To fetch multiple fields, you can use fields('table`, array('field1', 'field2', ...)). The first parameter is table name or alias. The second paramter is a list of field names to fetch from the table.

$result = db_select('post', 'p')
 ->fields('p', array('id', 'title', 'created'))
 ->getResult();

_pr($result); // array of results

This generates the following query:

SELECT `p`.`id`, `p`.`title`, `p`.`created` FROM `post` `p`

If you want field alias, you can use nested array in fields(), for example,

$result = db_select('post', 'p')
 ->fields('p', array('id', array('title', 'title'), 'created'))
 ->getResult();

_pr($result); // array of results

In this case, post_title is alias for title. This generates the following query:

SELECT `p`.`id`, `p`.`title` `title`, `p`.`created` FROM `post` `p`

Selecting Data for Single Field

To fetch a single field, you can use field('field_name') and then fetch().

$title = db_select('post', 'p')
 ->field('title')
 ->fetch();

echo $title;

This generates the following query:

SELECT `p`.`title` FROM `post`

Joining Tables

If you want to join multiple tables, you can use join($table, $alias, $condition, $type = 'INNER'). Here is explanation of the list of arguments:

	$table is the table name to join.

	$alias is the alias for the table name and you can also set null for this.

	$condition is the joining condition e.g., table1.pk_id = table2.fk_id.

	$type is the join type. Available options are INNER, LEFT, RIGHT, OUTER. Default is INNER.

$result = db_select('post', 'p')
 ->fields('p', array('id', 'title'))
 ->fields('u', array(array('name', 'author')))
 ->fields('c', array(array('name', 'categoryName')))
 ->join('user', 'u', 'p.uid = u.uid')
 ->leftJoin('category', 'c', 'p.cat_id = c.cat_id')
 ->getResult();
_pr($result); // array of results

It generates the following query:

SELECT `p`.`id`, `p`.`title`, `u`.`name` `author`, `c`.`name` `categoryName`
FROM `post` `p`
INNER JOIN `user` `u` ON `p`.`uid` = `u`.`uid`
LEFT JOIN `category` `c` ON `p`.`id` = `c`.`id`

Note

	Instead of fourth parameter to join(), you could also use the individual methods - leftJoin(), rightJoin() and outerJoin().

 Native Queries

Native Queries

PHPLucidFrame provides several db helper functions to retrieve data from your database using native queries. You can use the following functions to retrieve your data:

	db_query() [http://www.phplucidframe.com/api-doc/latest/function-db_query.html] which peforms a query on the database.

	db_fetchAssoc() [http://www.phplucidframe.com/api-doc/latest/function-db_fetchAssoc.html] which fetchs a result row as an associate array.

	db_fetchArray() [http://www.phplucidframe.com/api-doc/latest/function-db_fetchArray.html] which fetchs a result row as a numeric array.

	db_fetchObject() [http://www.phplucidframe.com/api-doc/latest/function-db_fetchObject.html] which fetchs a result row as an object.

	db_fetch() [http://www.phplucidframe.com/api-doc/latest/function-db_fetch.html] which performs a query on the database and return the first field value only.

	db_fetchResult() [http://www.phplucidframe.com/api-doc/latest/function-db_fetchResult.html] which performa a query on the database and return the first result row as object.

	db_extract() [http://www.phplucidframe.com/api-doc/latest/function-db_extract.html] which performs a query on the database and return the array of all results.

Note

Instead of using native query to fetch data, QueryBuilder is recommended. See Query Builder usage.

 Schema Manager

Schema Manager

As of version 1.14, PHPLucidFrame added a new feature called Schema Manager to manage your site database. A schema file for your database can be defined in the directory /db. The file name format is schema.[namespace].php where namespace is your database namespace defined in $lc_databases of /inc/config.php. If [namespace] is omitted, “default” is used. The schema file syntax is an array of options and table names that must be returned to the caller. A sample schema file is available at /db/schema.sample.php in the release.

Default Options for Tables

The schema syntax starts with _options which is a set of defaults for all tables, but it can be overidden by each table definition.

'_options' => array(
 // defaults for all tables; this can be overidden by each table
 'timestamps' => true, // all tables will have 3 datetime fields - `created`, `updated`, `deleted`
 'constraints' => true, // all FK constraints to all tables
 'engine' => 'InnoDB', // db engine for all tables
 'charset' => 'utf8', // charset for all tables
 'collate' => _p('db.default.collation'), // collation for all tables; inherited from /inc/parameter/
),

Table Definition

After then, each table can be defined using table name as key and value as an array of field definition. The following is a snapshot of example schema definition for two tables (category and post) that have one-to-many relation.

// array keys are table names without prefix
'category' => array(
 'slug' => array('type' => 'string', 'length' => 255, 'null' => false, 'unique' => true),
 'catName' => array('type' => 'string', 'length' => 200, 'null' => false),
 'catName_en' => array('type' => 'string', 'length' => 200, 'null' => true),
 'catName_my' => array('type' => 'string', 'length' => 200, 'null' => true),
 'options' => array(
 'pk' => array('cat_id'), // type: integer, autoinc: true, null: false, unsigned: true
 'timestamps' => true, // created, updated, deleted; override to _options.timestamps
 'charset' => 'utf8', // override to _options.charset
 'collate' => 'utf8_unicode_ci', // override to _options.collate
 'engine' => 'InnoDB', // override to _options.engine
),
 '1:m' => array(
 // one-to-many relation between `category` and `post`
 // there must also be 'm:1' definition at the side of `post`
 'post' => array(
 'name' => 'cat_id', // FK field name in the other table (defaults to "table_name + _id")
 //'unique' => false, // Unique index for FK; defaults to false
 //'default' => null, // default value for FK; defaults to null
 'cascade' => true, // true for ON DELETE CASCADE; false for ON DELETE RESTRICT
),
),
),
'post' => array(
 'slug' => array('type' => 'string', 'length' => 255, 'null' => false, 'unique' => true),
 'title' => array('type' => 'string', 'null' => false),
 'title_en' => array('type' => 'string', 'null' => true),
 'title_my' => array('type' => 'string', 'null' => true),
 'body' => array('type' => 'text', 'null' => false),
 'body_en' => array('type' => 'text', 'null' => true),
 'body_my' => array('type' => 'text', 'null' => true),
 'options' => array(
 'Pk' => array('id'), // if this is not provided, default field name to `id`
),
 '1:m' => array(
 // one-to-many relation between `post` and `post_image`
 // there must also be 'm:1' definition at the side of `post_image`
 'post_image' => array(
 'name' => 'id',
 'cascade' => true,
),
),
 'm:1' => array(
 'category', // reversed 1:m relation between `category` and `post`
 'user', // reversed 1:m relation between `user` and `post`
),
 'm:m' => array(
 // many-to-many relation between `post` and `tag`
 // there must also be 'm:m' definition at the side of `tag`
 'tag' => array(
 'name' => 'id',
 'cascade' => true,
),
),
),

The following describes the rule explanation of table schema array.

	Name

	Default

	Explanation

	{field_name}

	
	The field name (a valid field name for the underlying database
table). Use the field name “slug” for the sluggable field.
Generally, you don’t have to define primary key field. It will be
added by default using the field name “id” with the following rule:

	type: integer

	autoinc: true

	null: false

	unsigned: true

However, if you want to use other field type (e.g, string type) and
rule for your primary key, you must define the field here using your
own rule, for example,
'id' => array('type' => 'string', 'length' => 64, 'null' => false)

	{field_name}.type

	
	The data type (See Data Type Mapping Matrix for the underlying database)

	{field_name}.length

	255 for string
11 for int/integer
1 for boolean

array(0, 0) for decimal

array(0, 0) for float

	The length of the field

	{field_name}.null

	true

	Allow NULL or NOT NULL

	{field_name}.default

	
	The default value for the field

	{field_name}.unsigned

	false

	Unsigned or signed

	{field_name}.autoinc

	false

	Auto-increment field

	{field_name}.unique

	false

	Unique index for the field

	options

	
	The array of the table options

	options.pk

	array('id')

	One or more primary key field names. The default primary key field
name is “id”. If you want to use a different name rather than “id”
(e.g., user_id, post_id), you can define it here. The default primary
key field definition is

	type: integer

	autoinc: true

	null: false

	unsigned: true

	options.timestamps

	true

	Include 3 datetime fields - created, updated, deleted;
override to _optons.timestamps

	options.charset

	utf8

	The charset for the table; override to _options.charset

	options.collate

	utf8_unicode_ci

	The charset for the table; override to _options.collate

	options.engine

	InnoDB

	The charset for the table; override to _options.engine

	options.unique

	
	Unique index for composite fields

array('keyName' => array('field_name1', 'field_name2'))

	1:m

	
	One-to-Many relationship; if you define this, there must be m:1
definition at the many-side table

	1:m.{table_name}

	
	The name of the many-side table as array key with the following
options.

	1:m.{table_name}.name

	table_name + “_id”

	The foreign key field name in the many-side table

	1:m.{table_name}.unique

	false

	Unique index for the foreign key field

	1:m.{table_name}.default

	null

	Default value for the foreign key field

	1:m.{table_name}.cascade

	false

	
	true for ON DELETE CASCADE

	false for ON DELETE RESTRICT

	null for ON DELETE SET NULL

	m:1

	
	Array of table names that are reverse of one-to-many relations to
1:m

	m:1.{table_name}

	
	The name of the one-side table

	m:m

	
	Many-to-many relationship; if you define this, there must be m:m
definition at the other many-side table

	m:m.{table_name}

	
	The name of the reference table

	m:m.{table_name}.table

	
	Optional pivot table name; if it is not defined, the two table names
will be used concatenating with _to_ such as table1_to_table2

	m:m.{table_name}.name

	table_name + “_id”

	The reference field name in the pivot table

	m:m.{table_name}.cascade

	false

	
	true for ON DELETE CASCADE

	false for ON DELETE RESTRICT

	null for ON DELETE SET NULL

	1:1

	
	One-to-One relationship

	1:1.{table_name}

	
	The name of the reference table

	1:1.{table_name}.name

	table_name + “_id”

	Foreign key field name that will be included in the table; it maps to
the primary key of the reference table

	1:1.{table_name}.cascade

	false

	
	true for ON DELETE CASCADE

	false for ON DELETE RESTRICT

	null for ON DELETE SET NULL

Data Type Mapping Matrix

The following table shows the matrix that contains the mapping information for how a specific type is mapped to the database.

	Type Name

	MySQL Data Type

	Explanation

	smallint

	SMALLINT

	2-byte integer values:

	Unsigned integer with a range of 0 to 65535

	Signed integer with a range of −32768 to 32767

	mediumint

	MEDIUMINT

	3-byte integer values:

	Unsigned integer with a range of 0 to 16777215

	Signed integer with a range of −8388608 to 8388607

	int/integer

	INT

	4-byte integer values:

	Unsigned integer with a range of 0 to 4294967295

	Signed integer with a range of −2147483648 to 2147483647

	bigint

	BIGINT

	8-byte integer values:

	Unsigned integer with a range of 0 to 18446744073709551615

	Signed integer with a range of −9223372036854775808 to 9223372036854775807

	decimal

	NUMERIC(p,s)

	A numeric data with fixed (exact) point precision.
The precision (p) represents the number of significant digits that
are stored for values. The scale (s) represents the number of digits
that can be stored following the decimal point.

	float

	DOUBLE(p,s)

	A numeric data with floating (approximate) point
precision. The precision (p) represents the number of significant
digits that are stored for values. The scale (s) represents the
number of digits that can be stored following the decimal point.

	string

	VARCHAR

	String data with a maximum length specified

	char

	CHAR

	String data with a fixed length specified

	binary

	VARBINARY

	Binary string data with a maximum length specified

	tinytext

	TINYTEXT

	String data with a maximum length of 255 characters.

	text

	TEXT

	String data with a maximum length of 6,553 characters.

	mediumtext

	MEDIUMTEXT

	String data with a maximum length of 16,777,215 characters.

	longtext

	LONGTEXT

	String data with a maximum length of 4,294,967,295 characters.

	tinyblob

	TINYBLOB

	String data with a maximum length of 6,553 characters.

	blob

	BLOB

	Binary string data with a maximum length of 6,553 characters.

	mediumblob

	MEDIUMBLOB

	Binary string data with a maximum length of 16,777,215 characters.

	longblob

	LONGBLOB

	Binary string data with a maximum length of 4,294,967,295 characters.

	array

	TEXT

	An array data based on PHP serialization. It uses serialization to represent
an exact copy of your array as string. The database and values retrieved
from the database are always converted to PHP’s array type using deserialization.

	json

	TEXT

	An array data based on PHP’s JSON encoding functions. It stores a valid UTF8 encoded
JSON format string and values received from the database are always the return value
from PHP’s json_decode() function.

	boolean

	TINYINT(1)

	A boolean data. If you know that the data to be stored always is a boolean
(true or false), you should consider using this type.

	date

	DATE

	A date data with format YYYY-MM-DD

	datetime

	DATETIME

	A date and time with format YYYY-MM-DD HH:MM:SS

	time

	TIME

	A time data with format HH:MM:SS

Loading Your Schema

Assuming that you have created your application database and you have defined your schema in /db/schema.php for the database, you can load or import the database using LucidFrame console tool by running the command:

$ php lucidframe schema:load

It will import the database defined under the namespace “default”. If you want to load another database defined under a different namespace, for example “sample”, you just need to provide the namespace in the command such as

$ php lucidframe schema:load sample

Exporting Your Schema

You can export or dump your database loaded by your schema definition. The LuicdFrame console command schema:export will help you.

$ php lucidframe schema:export

It will export the database of the namespace “default” in the directory /db/generated/ as .sql file. You can also provide the namespace in the command such as

$ php lucidframe schema:export sample

Managing Schema Changes

As of version 2.2.0, PHPLucidFrame provides a way to manage schema changes. It helps you to programmatically deploy new versions of your database schema easily in a standardized way.

Let’s say an example, we use the sample database as our default and we are adding a new field wechatUrl in the table social_profile. Let’s edit the file /db/schema.sample.php

'social_profile' => array(
 'facebook_url' => array('type' => 'string', 'null' => true),
 'twitter_url' => array('type' => 'string', 'null' => true),
 'instagram_url' => array('type' => 'string', 'null' => true),
 'linkedin_url' => array('type' => 'string', 'null' => true),
 '1:1' => array(
 // one-to-one relation between `social_profile` and `user`
 // no need to define 1:1 at the side of `user`
 'user' => array(
 'name' => 'uid',
 'cascade' => true,
),
),
),

Then, run schema:diff sample and it will generate a file with extension sqlc in /db/version/sample

$ php lucidframe schema:diff sample
PHPLucidFrame 3.3.0 by Sithu K.

./db/version/sample/20170406223436.sqlc is exported.
Check the file and run `php lucidframe schema:update sample`
Done.

You can open that sqlc file and check its content. Finally, you can run schema:update sample to apply this changes in your underlying database.

$ php lucidframe schema:update sample
PHPLucidFrame 3.3.0 by Sithu K.

IMPORTANT! Backup your database before executing this command.
Some of your data may be lost. Type "y" or "yes" to continue: y

Executing 20170406223436

Your schema has been updated.
Done.

The following example will show you in another scenario where renaming the fields. Let’s say we are remove Url from all field names of the table social_profile such as

'social_profile' => array(
 'facebook' => array('type' => 'string', 'null' => true),
 'twitter' => array('type' => 'string', 'null' => true),
 'instagram' => array('type' => 'string', 'null' => true),
 'linkedin' => array('type' => 'string', 'null' => true),
 '1:1' => array(
 // one-to-one relation between `social_profile` and `user`
 // no need to define 1:1 at the side of `user`
 'user' => array(
 'name' => 'uid',
 'cascade' => true,
),
),
),

Again, run schema:diff sample and you will be confirmed for renaming fields.

$ php lucidframe schema:diff sample
PHPLucidFrame 3.3.0 by Sithu K.

Type "y" to rename or type "n" to drop/create for the following fields:

Field renaming from `facebook_url` to `social_profile.facebook`: y
Field renaming from `twitter_url` to `social_profile.twitter`: y
Field renaming from `instagram_url` to `social_profile.instagrams`: y
Field renaming from `linkedin_url` to `social_profile.linkedin`: y

./db/version/sample/20170406224852.sqlc is exported.
Check the file and run `php lucidframe schema:update sample`
Done.

Now you can see there are two sqlc files in the directory /db/version/sample. Then, as suggested above, you just need to run schema:update sample to update your database schema.

$ php lucidframe schema:update sample
PHPLucidFrame 3.3.0 by Sithu K.

IMPORTANT! Backup your database before executing this command.
Some of your data may be lost. Type "y" or "yes" to continue: y

Executing 20170406224852

Your schema has been updated.
Done.

That’s it! You now have two version files of your schema changes stored in /db/version/sample.

If you are of team of developers and your team uses version control system, those sqlc files should be tracked in your VCS to make it available to other developers in the team. When they get the files, they simply needs to run the command schema:update to synchronize their databases as yours.

 Database Seeding

Database Seeding

Database seeding is a very useful feature to initialize your database with default data or sample data. The seeding feature is available since PHPLucidFrame 1.14.

By default, LucidFrame has two directories - /db/seed/default and /db/seed/sample. If you have only one database for your application, /db/seed/default is the right folder where you should create your seeding files. /db/seed/sample has the sample seeding files for the sample database which would be the namespace sample.

Seeding Syntax

The following is seeding file syntax.

<?php
use LucidFrame\Core\Seeder; // required ony if you have any reference field to insert and to use Seeder::getReference()

// Must return the array
return array(
 'order' => 1, // Execution order: lower number will be executed in greater priority, especially for reference fields
 'record-1' => array(// "record-1" can be used for the reference field in the other file
 // a record is an array of field and value
 // field => value
 'field1' => 'value2',
 'field2' => 'value2',
 'field3' => Seeder::getReference('record-key-from-previously-executed-seed'),
),
 'record-2' => array(
 'field1' => 'value2',
 'field2' => 'value2',
 'field3' => Seeder::getReference('record-key-from-previously-executed-seed'),
),
);

The record key record-1 should be unique for each record and is to be used for reference field in other seeding file. Typically it could be the format {table-name}-{number}, e.g., category-1, category-2, post-1, post-2, etc. However, it is just a naming convention and it does not tie to any rule.

Seeding Example

Let’s say we have 4 tables to be populated with a set of data - category, post, tag and post_to_tag. The relationship between category and post is one-to-many relationship; post and tag have many-to-many relationship. So, there must be 4 seeding PHP files with the names of respective table names.

/db
 /default
 |-- category.php
 |-- post.php
 |-- post_to_tag.php
 |-- tag.php

The followings are example contents for each seeding file.

category.php

<?php
// Data for the table "category"
return array(
 'order' => 1, // Execution order: this file will be executed firstly
 'category-1' => array(// a record is an array of field and value
 // field => value
 'slug' => 'technology',
 'name' => 'Technology',
),
 'category-2' => array(
 'slug' => 'framework',
 'name' => 'Framework',
),
);

post.php

<?php
// Data for the table "post"
use LucidFrame\Core\Seeder; // required if you have any reference field to insert

return array(
 'order' => 2, // this file will be executed after seeding is executed for the table "category"
 'post-1' => array(
 'cat_id' => Seeder::getReference('category-1'), // reference field that will be inserted with category id that will be created by the previous category seeding execution
 'slug' => 'welcome-to-the-lucidframe-blog',
 'title' => 'Welcome to the LucidFrame Blog',
 'body' => 'LucidFrame is a mini application development framework - a toolkit for PHP developers. It provides logical structure and several helper utilities for web application development. It uses a module architecture to make the development of complex applications simplified.',
),
);

tag.php

<?php
// Data for the table "tag"
return array(
 'order' => 3, // this file will be executed in third
 'tag-1' => array(
 'slug' => 'php',
 'name' => 'PHP',
),
 'tag-2' => array(
 'slug' => 'mysql',
 'name' => 'MySQL',
),
);

post_to_tag.php

<?php
// Data for the many-to-many table "post_to_tag"
use LucidFrame\Core\Seeder;

return array(
 'order' => 4, // this file will be executed lastly in all of four files
 'post-to-tag-1' => array(
 'post_id' => Seeder::getReference('post-1'), // reference field to the table "post"
 'tag_id' => Seeder::getReference('tag-1'), // reference field to the table "tag"
),
 'post-to-tag-2' => array(
 'post_id' => Seeder::getReference('post-1'),
 'tag_id' => Seeder::getReference('tag-2'),
),
);

Note

	You can check the example seeding files at /db/seed/sample [https://github.com/phplucidframe/phplucidframe/blob/master/db/seed/sample].

 Middleware

Middleware

As of version 2.0, PHPLucidFrame added middleware support. You can handle a HTTP request through middleware. You can define middlewares to execute before or after a HTTP request. For example, you can include a middleware that authenticates a user. If the user is not authenticated, the middleware will redirect the user to the login page, otherwise, it will allow the request to proceed. All middlewares should be located and defined in the /app/middleware directory.

Before Middleware

A before middleware is an event executed before a request. Here is its definition syntax:

_middleware(function () {
 // Do something before the page request
 // for example, checking bearer token from HTTP Authorization
 // $authorization = _requestHeader('Authorization')
});

_middleware(function () {
 // Do something before the page request
}, 'before'); // 'before' is optional and default

After Middleware

An after middleware is an event executed after a request. Here is its definition syntax:

_middleware(function () {
 // Do something at the end of the page request
}, 'after');

Order/Precedence for Middlewares

You can register precedence of the middleware execution by using the method order(), for example,

_middleware(function () {
 // ...
})->order(2);

_middleware(function () {
 // ...
})->order(1);

The middlewares will be executed in ascending order, so the second middleware will be executed first.

Assigning Middleware to Routes

A middleware is run during every HTTP request to your application by default. However, you can assign middleware to specific routes using the on() method. The first parameter to the on() method is filter name and the second parameter is any route paths or route names.

	Filter Name

	Description

	Example

	startWith

	To run the middleware on the route starting with the given URI

	->on('startWith', 'api')

	contain

	To run the middleware on the route containing the given URI

	->on('contain', 'api/posts')

	equal

	To run the middleware on the route equal to the given route name or path

	->on('equal', 'lc_blog_show')

	except

	To run the middleware on the routes except the given list

	->on('except', 'login')

Note

	You can check some example middlewares at https://github.com/phplucidframe/phplucidframe/blob/master/app/middleware/example.php

 Form & Validation

Form & Validation

You can implement a form in two ways – using AJAX and without using AJAX. PHPLucidFrame provides AJAX form submission by default.

Creating AJAX Form

Create a form tag as usual. If you do not set the attribute action, LucidFrame will look for action.php in the same directory and will submit to it. Until this time of writing, id="formId" must be used. Your form should also have a message container in which any error message can be shown.

<form name="your-form-name" id="your-form-id" method="post">
 <div class="message error"></div>

 <!-- HTML input elements here as usual -->

 <?php form_token(); ?>
</form>

You can also provide the action attribute for your desired form handling file.

<form name="your-form-name" id="your-form-id" action="<?php echo _url('path/to/action.php'); ?>" method="post">
 <div class="message error"></div>

 <!-- HTML input elements here as usual -->

 <?php form_token(); ?>
</form>

If you don’t want to clear data in form inputs after submit, you can set data-clear="off" to the form tag.

<form name="your-form-name" id="your-form-id" data-clear="off" method="post">

One of the following two button implementation should be made to your AJAX form.

	<input type="submit" /> or <button type="submit">..</button>

	<input type="button" class="submit" /> or <button type="button" class="submit">...</button>

If your form has no submit type button and if you want the form submission when pressing “Enter” in any text box, set class="default-submit" to the form tag.

Creating A Generic Form Without AJAX

You can make a generic form submission without AJAX using class="no-ajax" in the <form> tag.

<form name="your-form-name" id="your-form-id" method="post" class="no-ajax">
 <div class="message error"></div>

 <!-- HTML input elements here as usual -->

 <?php form_token(); ?>
</form>

Form Action Handling & Validation

The following is a scaffold of AJAX form handling and validation. You can check the sample codes in the release.

<?php
/**
 * The action.php (optional) handles form submission.
 * It should perform form validation, create, update, delete of data manipulation to database.
 * By default, a form is initiated for AJAX and action.php is automatically invoked if the action attribute is not given in the <form> tag.
 */
$success = false;

if (_isHttpPost()) {
 $data = _post(); // Sanitize your inputs

 /** Form validation prerequisites here, for example */
 $validations = array(
 'title' => array(
 'caption' => _t('Title'),
 'rules' => array('mandatory'),
),
 'body' => array(
 'caption' => _t('Body'),
 'rules' => array('mandatory'),
),
);

 if (form_validate($validations, $data)) {
 /**
 Database operations here
 */

 if ($success) {
 form_set('success', true);
 form_set('message', _t('Your successful message is here'));

 // If you want to redirect to another page, use the option 'redirect'
 // form_set('redirect', _url('path/to/your/page'));
 }
 } else {
 form_set('error', validation_get('errors'));
 }
}

// Respond to the client
form_respond('your-form-id'); // HTML form ID must be used here

If your form is a generic form without using AJAX, the last line in above code is not required in action.php. Instead, you have to use form_respond('your-form-id', validation_get('errors')) at the end of the form in view.php in order to show error messages correctly.

<form name="your-form-name" id="your-form-id" method="post" class="no-ajax">
 <div class="message error"></div>
 <!-- HTML input elements here as usual -->
 <?php form_token(); ?>
</form>
<?php form_respond('your-form-id', validation_get('errors')); ?>

Setting Data Validation

PHPLucidFrame provides a number of functions that aid in form validation. There are several validation rules provided and using them can be quite easy. First of all, a validation array has to be defined and the syntax of the validation array is:

$validations = array(
 'htmlIdOrName' => array(// The HTML id or name of the input element
 'caption' => _t('Your Element Caption'); // The caption to show in the error message
 'value' => $value, // The value to be validated. If it is not provided, you need to provide all POST data to form_validate().
 'rules' => array(), // Array of validation rules defined, e.g., array('mandatory', 'email')
 'min' => '', // The required property for the rule 'min', 'minLength', 'between'
 'max' => '', // The required property for the rule 'max', 'maxLength', 'between'
 'protocol' => '', // The required property for the rule 'ip'
 'maxSize' => '', // The required property for the rule 'fileMaxSize'
 'maxWidth' => '', // The required property for the rule 'fileMaxWidth', 'fileMaxDimension'
 'maxHeight' => '', // The required property for the rule 'fileMaxHeight' 'fileMaxDimension'
 'width' => '', // The required property for the rule 'fileExactDimension'
 'height' => '', // The required property for the rule 'fileExactDimension'
 'extensions' => '', // The required property for the rule 'fileExtension'
 'dateFormat' => '', // The required property for the rule 'date', 'datetime'
 'pattern' => '', // The required property for the rule 'custom'
 'table' => '', // The required property for the rule 'unique'
 'field' => '', // The required property for the rule 'unique'
 'id' => '', // The optional property for the rule 'unique'
 'parameters' => array(
 // The arguments (starting from the second) passing to the custom validation functions
 // this may be needed when you set your custom rule in the property 'rules'
 'validate_customRule' => array('param2', 'param3')
),
 'messages' => array(
 // to overwrite the default validation messages OR
 // to define the custom message for the custom validation rules
 'coreRule' => _t('The overwritten message here'), // 'coreRule' means the core validation rule provided by LucidFrame, e.g., mandatory, email, username, etc.
 'validate_customRule' => _t('Your custom message here')
)
),
 'anotherInputHtmlIdOrName' => array(
 // similiar options described above ...
),
);

The validation array should be passed to form_validate() to be processed.

if (form_validate($validations)) { // or validation_check($validations)
 // ...
}

You can also add POST data to the second parameter.

$data = _post();

$validations = array(
 // ...
);

if (form_validate($validations, $data)) {
 // ...
}

Note

	validation_check() doesn’t check the form token generated by form_token().

 File Helper

File Helper

PHPLucidFrame provides a basic file upload handling using generic form and AsynFileUploader that can be used in AJAX form.

File Upload Form and File Handling

PHPLucidFrame provides a basic file upload handling using generic form. First of all, you could define maximum file upload size, upload directory and required dimension (if image upload).

/inc/constants.php
define('MAX_FILE_UPLOAD_SIZE', 20); // in MB

define('PHOTO_DIR', FILE . 'photos/'); // assuming that you have this directory
define('WEB_PHOTO_DIR', WEB_ROOT . 'files/photos/');

/app/inc/site.config.php
// $lc_photoDimensions - desired width and height for the uploaded photos
$lc_photoDimensions = array('400x300', '200x150'); // 3 photos will be uploaded according to the defined dimensions

Since 1.6, a new configuration variable $lc_imageFilterSet is added.

$lc_imageFilterSet – Default image filter setting that applies to image upload
$lc_imageFilterSet = array(
 'maxDime